Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \ 0 _4 7 9 / \ 3 5 For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
URL: https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-search-tree/
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def __init__(self):
self.inorder_list = []
self.postorder_list = []
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
if root == None:
return None
else:
self.inorder_traversal(root)
self.postorder_traversal(root)
#get the positions of node1 and node2 in the inorder traversal of the tree
index_node1 = self.inorder_list.index(p.val)
index_node2 = self.inorder_list.index(q.val)
if index_node1 < index_node2:
between_elems = self.inorder_list[index_node1 : index_node2 + 1]
else:
between_elems = self.inorder_list[index_node2 : index_node1 + 1]
lca_elem = self.find_elem_max_index(between_elems)
return lca_elem
def find_elem_max_index(self, between_elems):
max_index = -1
elem = None
for entries in between_elems:
elem_index = self.postorder_list.index(entries)
if elem_index > max_index:
max_index = elem_index
elem = entries
return elem
def inorder_traversal(self, node):
if node:
self.inorder_traversal(node.left)
self.inorder_list.append(node.val)
self.inorder_traversal(node.right)
def postorder_traversal(self, node):
if node:
self.postorder_traversal(node.left)
self.postorder_traversal(node.right)
self.postorder_list.append(node.val)